ALAGAPPA UNIVERSITY

(Accredited with ‘A+’ Grade by NAAC (with CGPA: 3.64) in the Third Cycle and Graded as
category - | University by MHRD-UGC)
(A State University Established by the Government of Tamilnadu)

KARAIKUDI - 630 003

DIRECTORATE OF DISTANCE EDUCATION

B.Sc. (COMPUTER SCIENCE)

Second Year — Third Semester

13034 — DATA STRUCTURE AND ALGORITHIM

Copy Right Reserved For Private Use only

Author:

Dr. A. Sumathi,

Assistant Processor,

Department of Computer Science,
SRC, Sastra University,
Kumbakonam -612 001.

“The Copyright shall be vested with Alagappa University”

All rights reserved. No part of this publication which is material protected by this copyright notice may be
reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or
retrieval system, without prior written permission from the Alagappa University, Karaikudi, Tamil Nadu.

CONTENTS Page NO
BLOCK 1 : SIMPLE C++ PROGRAMS

UNIT -1: 9-11
Introduction Simple C++ Programs

UNIT - 2: 11-14
Control Structures: Using if and switch constructs Programs

UNIT - 3: 14-18
Looping , Arrays ,Structure statements: for, while, do-while, Strings and Matrices
Programs Problems

BLOCK 2 : OOPs CONCEPTS

UNIT - 4: 19-26
Functions: static function, friend function ,constructor , destructor and operator
overloading and Recursive programs

UNIT- 5: 26-31
Inheritance and polymorphism: Inheritance types and polymorphism types, Virtual
function

UNIT- 6: 32-34
File: File Handling C++ Programs, opening and closing a data file - creating a data file,
processing a data file.

UNIT- 7: 35-36
Pointers : Pointers and Pointers with Arrays Programs
BLOCK 3: LINEAR DATA STRUCUTURE

UNIT 8: 37-39
Stacks : Stack Implementation, expression evaluation, Polish notation

40-42
UNIT 9:
Queues: Queue Implementation, Applications of Queue
UNIT-10: 42-49
Linked List programs: List, Merging lists, Linked list, Single linked list, Double Linked
List, Header Linked list, Insertion and Deletion of linked list, Traversing a linked list.

BLOCK 4 : NON LINEAR DATA STRUCTURE

50-62
UNIT 11:
Tree Programs : Trees, Binary Trees, Types of Binary trees, Binary Tree Representation,
Traversing Binary Trees, Binary Search tree, Insertion and Deletion operations,

63-78
UNIT 12:
Graphs:
Shortest Path Algorithms

o Dijkstra’s Algorithm

0 Graphs with Negative Edge costs
0 Acyclic Graphs
o All Pairs Shortest Paths Algorithm
Minimum cost Spanning Trees
o Kruskal’s Algorithm
o Prims’s Algorithm
0 Applications
[] Breadth First Search
BLOCK 5 : SEARCHING AND SORTING ALGORITHMS 79-82

UNIT 13:
Searching Techniques: Linear and Binary search Programs

UNIT 14: 83-91
Sorting techniques: Bubble sort, Quick sort, Insertion sort, Merge sort

C++ Introduction

C++ is a multi-paradigm programming language that supports
object-oriented programming (OO0P), created by Bjarne
Stroustrup in 1983 at Bell Labs, C++ is an extension(superset) of C
programming and the programs are written in C language can run in C++
compilers.

Uses of C++

C++ is used by programmers to create computer software. It is

used to create general systems software, drivers for various computer
devices, software for servers and software for specific applications and
also widely used in the creation of video games.
C++ is used by many programmers of different types and coming from
different fields. C++ is mostly used to write device driver
programs, system software, and applications that depend on
direct hardware manipulation under real-time constraints. It is also used
to teach the basics of object-oriented features because it is simple and is
also used in the fields of research. Also, many primary user
interfaces and system files of Windows and Macintosh are written using
C++. So, C++ is a popular, strong and frequently used programming
language of this modern programming era.

Object-oriented programming and C++

C++ supports Object-Oriented Programming (OOP), with four
significant principles of object-oriented development:
Abstraction
Encapsulation
Inheritance
Polymorphism

Abstraction

Data abstraction allows a program to ignore the details of how a
data type is represented. Abstraction refersto the act of representing
essential features without including the background details or
explanations.

Encapsulation

Unable to deal with the complexity of an object, human chooses
to ignore its non-essential details and concentrate on the details which are
essential to our understanding. You can place a simple context of the
object model, that abstraction is "looking for what you want™ within an
object or class. But there is another major concept connected to
abstraction which is called encapsulation.

1

Simple C++ programs

Notes

Self —instructional material

https://www.w3schools.in/c-tutorial/
https://www.w3schools.in/c-tutorial/
https://www.w3schools.in/c-tutorial/
https://www.w3schools.in/cplusplus-tutorial/data-abstraction/
https://www.w3schools.in/cplusplus-tutorial/encapsulation/
https://www.w3schools.in/cplusplus-tutorial/inheritance/
https://www.w3schools.in/cplusplus-tutorial/polymorphism/

Simple C++ programs

Notes

Self —instructional material

So basically, encapsulation can be defined as the process of hiding

all of the details of an object that do not throw in or dealt with its essential

characteristics. Encapsulation can also be defined as preventing access to
non-essential details of classes or its objects. Abstraction and encapsulation
have close bonding among each other. Encapsulation assists abstraction by
providing a means of suppressing the non-essential details.

Inheritance

The technique of deriving a new class from an old one is called
inheritance. The old class is referred to as base class and the new class is
referred to as derived class or subclass. Inheritance concept allows
programmers to define a class in terms of another class, which makes
creating and maintaining application easier. When writing a new class,
instead of writing new data member and member functions all over again,
programmers can make a bonding of the new class with the old one that the
new class should inherit the members of the existing class. A class can get
derived from one or more classes, which means that it can inherit data and
functions from multiple base classes.

Here is the syntax how inheritance is performed in C++:
class derived-class: visibility-mode base-class

Polymorphism

Polymorphism is another concept of object-oriented programming
(OOPs). The attitude which lies beneath this concept is "single interface
having multiple implementations.” This provides a single interface for
controlling access to a general class of actions. Polymorphism can be
gained in both ways:

e Compile time
e Runtime

A common and simple example of polymorphism is when you
used >> and << as operator overloading in C++,
for cin and cout statements respectively. This bitwise shift operator at that

time acts as a inclusion operator and its overloaded meaning is defined
in iostream header file.

How to execute C++ program:

T
=3

TURBO C++

eSoftner

Through this app we can execute C++ programs. Simple C++ programs

How to open:
Notes

BE D & Filters v/

Best match
a Turbo C++
Deskiop app
Apps
& Turbo C++
% Uninstall Turbo C++ 32

Search the web

L turbo ¢+ + - See web results

P turboce4

Go to Start and search for Turbo C++:

TaTub

i ?
Turbo Cor New to programming language?

Start

Help Improve the Turbo C++ Family of

Recent

Turbo C++ default startup

Fullscreen mode (1f graphics card available)
Open live example page on startup (Cnce in a day)
Virtual Memory: 434 M8 Physical Memory : 62 M8

N

Self —instructional material

Simple C++ programs _In this app we have File menu:

Notes B8] rdit Search Run Compile Debug Project Options Window Help
DUPLICAT.CFP ——— 84—
New = NONAMEQO.CFP ——0-(1]5
Open...
Save
Save as...
Save all

Change dir...
Print
D03 shell

1:1
F1 Help | Exit Turbo C++

Edit menu:

Window Help
AT.CPP ————————————————8——
0.Cpp —————9-I[11q

Redo Shift+Alt+BkSp

Cut Shift+Del
Copy Ctrl+Ins
Paste Shift+Ins
Clear Ctrl+Del
Copy example

Show clipboard

1:1 ——
Undo the previous editor action

Self —instructional material

Simple C++
Search Menu: imple programs

File Edit Ja@ehl Fun Compile Debug Project Options Window

Replace...
Search again Ctrl+L

Notes

Go to line number...
Previous error Alt+F?
Next error Alt+F8
Locate function...

1:1
Search for text

F1 Help

Run Menu:

File Edit Search JTil] Compile Debug Project Options Window Help

Program reset Ctrl+F2
Go to cursor

Trace into

Step over

firguments. . .

F1 Help | Make and run the current program

Self —instructional material

Simple C++ programs

Notes

Self —instructional material

Compile Menu:

File Edit Search Run Debug Project Options Window Help

Make
Link
Build all

Information. ..
Remove messages

F1 Help | Compile the file in the active Edit window

Debug Menu:

Window Help

= File Edit Search Run Compile JEENGH Project Options

Evaluate/modify... Ctrl+F4
Call stack... Ctrl+F3
Watches »
Toggle breakpoint Ctrl+F8
Breakpoints. ..

1:1 —
F1 Help | Open an Inspector window to examine values in a data element

Project Menu:

File Edit Search Run Compile Debug Options

Close project

Add item...
Delete item
Local options...
Include files...

Window Help

1:1
Load a project file and its desktop

Option Menu:

DUPLICAT.CPP
NONAME®®.CPP

1:1
Specify properties of target file

File Edit Search Run Compile Debug Project Window He

Compiler 2
Transfer. ..

Make. ..

Linker >
Librarian...
Debugger. ..
Directories. ..

Environment >

Save. ..

Simple C++ programs

Notes

Self —instructional material

Simple C++ programs

Notes

Self —instructional material

“Window Menu:

Close all

= File Edit Search Run Compile Debug Project Options [ETHGHN Help

DUPLICAT.CPP

NONAME®O.CPP —Il
Zoom F5
Tile
Cascade
Next Fo
Close Alt+F3

Message
Output
Watch
User screen
Register

Pro ject
Project notes

Alt+Fo

List all...

F1 Help | Change the size or position of the active window

Help Menu:

DUPLICAT.CPP

Window

NONAMEG®. CFP

Index

Topic search
Previous topic
Help on help

Shift+F1
Ctrl+F1
Alt+F1

fibout. ..

1:1
F1 Help | Show table of contents for online Help

BLOCK - I SIMPLE C++ PROGRAMS

UNIT 1
Introduction: Simple C++ Programs

1.1 Write a program in C++ to print a message on output
screen:

#include<iostream.h>
int main()

{

cout<<’Hello world”;
return O;

¥

Output:
Hello world

1.2Write a program in C++ to print an integer value:

#include<iostream>

int main()

{
int a;
cout<<"Enter integer\n”;
cin>>a;
cout<<’Integer is ’<<a;
return O;

}

Output:
Enter integer
10

Integer is 10

1.3Write a program in C++ to add two numbers:

#include<iostream.h>
int main()

{

int a,b,sum;

Simple C++ programs

Notes

Self —instructional material

Simple C++ programs

Notes

Self —instructional material

cout<<"Enter the 1st number\n”;

cin>>a;
cout<<"Enter the 2nd number\n”;
cin>>b;
sum=a+b;
cout<<”Sum of two number ’<<a;
return O;

}

Output:

Enter the 1st number

10

Enter the 2nd number

20

Sum of two number 30

1.4Write a program in C++ to swap two numbers:

#include<iostream>
int main()
{
int a,b,c;
cout<<”Enter the 1st number\t”;
cin>>a;
cout<<’\nEnter the 2nd number\t”;
cin>>b;
c=a;
a=b;
b=c;
cout<<’First number is\t”<<a;
cout<<’\nSecond number is\t<<b;

return O;
}
Output:
Enter the first number 12
Enter the second number 13
First number is 13

Second number is 12

1.5Write a program in C++ to swap two numbers without
the help of third variable:

#include<iostream>
int main()

{

int a,b;
10

cout<<"Enter the 1st number\t”;
cin>>a;

cout<<”\nEnter the 2nd number\t”;
cin>>b;

a=a+b;

b=a-b;

a=a-b;

cout<<"First number is\t"’<<a;
cout<<”\Second number is\t”<<b;

return O;
}
Output:
Enter the first number 12
Enter the second number 13
First number is 13

Second number is 12

UNIT -2
Control Structures using if and switch
constructs program

2.1 The simple If statement:
Write a program to find the negative number:

#include<iostream>

int main()
{
cout<<’Please enter a number:\n “;
int x;
cin>>x;
/I this program only checks if the number is negative or not
if(x<0)
{
cout<<"\nNegative”;
}
return O;
}
Output:
Please enter a number:
-10
Negative

11

Simple C++ programs

Notes

Self —instructional material

Simple C++ programs

Notes

Self —instructional material

2.2 If — Else control structure
Write a program to find whether the given number is
negative or not:

#include<iostream>

int main()
{
cout<<’Please enter a number:\n ;
int X;
cin>>x;
/I this program only checks if the number is negative or not
if(x<0)
{ _
cout<<"\nNegative\n”;
}
else
{
cout<<”\nThe number is not negative”;
}
return O;
}
Output:
Please enter a number:
10

The number is not negative

2.31f — Else — Else If controls structure:
Write a program to find whether the given number is
positive or negative or zero:

#include<iostream>
int main()
{
cout<<’Please enter a number:\n ;
int x;
cin>>x;
/I this program only checks if the number is negative or not
if(x<0)
{

¥

cout<<”\nNegative\n”;

12

else if(x>0)
{
cout<<’\nPositive\n”;
}
else
{
cout<< “\nThe number is 0”;
}
return O;
}
Output:

Please enter a number:0
The number is 0

2.4Switch case:

Write a program to find weekdays based on the given

number:

#include<iostream>
int main()

{

cout<<’Please enter a number between 1 and 7:\n *;

int x;
cin>>x;
switch(num)
{
case 1:
cout<<’Sunday”’;
break;
case 2:
cout<<’Monday”;
break;
case 3:
cout<<’Tuesday”;
break;
case 4.
cout<<"Wednesday”;
break;
case 5:
cout<<"Thursday”;
break;

case 6:
cout<<’Friday”;
break;

case 7:
cout<<”Saturday”;

13

Simple C++ programs

Notes

Self —instructional material

Simple C++ programs

Notes

Self —instructional material

break;
I/ optional
default:
cout<<”Invalid Input”;

¥

return O;

¥

Output:

Please enter a numer between 1 and 7:
1

Sunday

UNIT -3
Looping, Arrays, Structure statements:
for, while, do-while, Strings and Matrices
Programs

3.1 Write a Program to find factorial of a number using For
Loop

#include<iostream>

int main()

{
int i ,n,factorial=1;
cout<<"Enter a number:";
cin>>n;
for(i=1;i<=n;i++)
{

factorial=factorial*i;

}
cout<<"Factorial of "<<n<<" ="<<factorial;
return 0'

}

Output :

Enter a number: 5
Factorial of 5 =120

3.2 Write a Program for Adam's Square Number Using
While Loop

#include<iostream.h>
#include<conio.h>

14

void main()
{
int n,ss1,r,s=0,ss,ns,sr,sum=0;
clrscr();
cout<<"Enter a number:";
cin>>n;
cout<<"\nGiven number is:"<<n;
ns=n*n;
cout<<"\nSquare of given number is:"<<ns;
while(n!=0)
{
r=n%10;
n=n/10;
s=s*10+r;
}
cout<<"\nReverse of given number is:"<<s;
SS=S™S;
cout<<"\nSquare of reverse number is:"<<ss;
while(ss!=0)
{
sr=s5%10;
$s=ss/10;
sum=sum*10+sr,
}
cout<<"\nReverse of square is:"<<sum;
if(ns==sum)

cout<<"\nGiven number is adam's number";

cout<<"\nNot an adam's number";

¥
getch();

}

Output :

Enter a number:12

Given number is:12

Square of given number is:144
Reverse of given number is:21
Square of reverse number is:441
Reverse of square is:144

Given number is adam's number

Enter a number:23

Given number is:23

Square of given number is:529
Reverse of given number is:32

15

Simple C++ programs

Notes

Self —instructional material

Simple C++ programs

Notes

Self —instructional material

' Square of reverse number is:1024

Reverse of square is:4201

Not an adam's number

3.3Write a program to print the sum of n natural numbers
using Do While Loop

#include<iostream>
#include<conio.h>

int main()
{
int n,i=1,5=0;
cout<<"Enter n:";
cin>>n;
do
{ _
S=S+I;
i++;
while(i<=n);
cout<<"Sum="<<s;
getch();
return O;
}
Output :
Enter n:8
Sum=36

3.4Write a program to Find Sum of n Array Elements

#include<iostream>

#include<conio.h>

void main()

{
int arr[30],i,n,sum=0;
cout<<"Enter n:";
cin>>n;
cout<<"Enter "<<n<<" numbers :":
for(i=0;i<n;i++)

{
cin>>arr[i];
}
for(i=0;i<n;i++)
{

16

sum=sum-+arr[i];
}
for(i=0;i<n;i++)
{

cout<<"Sum of Numbers =" <<sum;

¥
geteh();

Output:

Enter n: 5

Enter 5 numbers :
75789

Sum of Number = 36

3.5Write a program to Count Word in Sentence Using
String

#include<iostream.h>
#include<conio.h>
#include<string.h>
#include<Stdio.h>
void main()
{
char strs[100],count=0,strw[20];
int i,len;
cout<<"Enter a Sentence : ",
gets(strs);
len=strlen(strs);
for(i=0;i<len;i++)
{
if(strs[i]==""
{

count++;

}
}
cout<<"Total Num Of Words : "<<count+1;
getch();
}
Output:

Enter a Sentence : Hello cpp Program how are you
Total Num Of Words : 6

3.6Write a Program for Transpose of Matrix

#include<iostream>
int main()

{

17

Simple C++ programs

Notes

Self —instructional material

Simple C++ programs _ int a[10][10],m,n,i.j;
cout<<"Enter Rows and Columns : ";
cin>>m>>n;
Notes cout<<"Enter Matrix Elements : ";
for(i=0;i<m;i++)
{

for(j=0;j<n;j++)

cin>>a[i][jl;

¥

cout<<"Your Matrix : \n";
for(i=0;i<m;i++)

{
for(j=0;j<n;j++)
{
cout<<a[i][j]<<" ";
cout<<"™\n";
}
}

cout<<"Transpose Matrix : \n "
for(i=0;i<n;i++)

{
for(j=0;j<m;j++)
{
cout<<a[i][j]<<" ";
cout<<™\n";
}
}
return O;
}
Output :

Enter Rows and Columns : 2 2
Enter Matrix Elements:1 2 3 4
Your Matrix :

12
34
Transpose Matrix :

13

2 4

Self —instructional material 18

BLOCK -2 OOPS CONCEPTS

UNIT -4
Functions: static function, friend
function, constructor, destructor and
operator overloading and Recursive
programs.

Public and Private Keywords:

Public:

Public members can be accessed by any other code(members) in
the same class or other classes that references it.
Private:

Private members can be accessed only by code in the same class
or struct.

4.1 Use of Class: Program for Transaction in Bank

#include<iostream.h>
#include<conio.h>
class bank

{

char cust_name[20];

int acc_no;

int amount;

int bal;

char cust_address[20];

public:
void get();
void balance();
void withdraw();
void disp();

Y

void bank :: get(void)

{
cout<<"\n Cust_Name";
cin>>cust_name;
cout<<"\n A/c_No";
cin>>acc_no;

19

Oops concepts

Notes

Self —instructional material

Oops concepts

Notes

Self —instructional material

cout<<"\n Amount";
cin>>amount;

cout<<"\n Cust_Address";
cin>>cust_address;

bal=0;

bal=amount;

void bank :: balance(void)

{
cout<<"Balance"<<bal;
}
void bank :: withdraw()
{
cout<<™\n Enter amount";
cin>>amount;
bal=bal-amount;
}
void bank :: disp()
if(bal<100)
{
cout<<"No withdrawl";
}
else
{
cout<<"\n Cust_Name:"<<cust_name<<"\n";
cout<<"\n A/c_No:"<<acc_no<<"\n";
cout<<"\n Cust_Address:"<<cust_address<<™\n";
cout<<"\n Balance:"<<bal<<"\n";
}
void main()
{
clrscr();
bank b;
b.get();
b.balance();
b.withdraw();
b.disp();
getch();
}
OUTPUT:
Cust_Name: Elango
Alc_No: 58585

Amount: 5000
Cust_Address: 4, gandhinagar, Trichy

Balance 5000
Enter amount: 2000

20

Cust_Name: Elango

Alc_No: 58585
Cust_Address: 4,gandhinagar, Trichy
Balance: 3000

4.2 Write a Program Using Static Variable and Static

Function

#include<iostream>

class demo
{ -
private:
static int X;
static int y;
public:
static void print()
cout<<"Value Of x : "<<x;
cout<<"Value Of y : "<<y;
}
I
int demo ::x=10;
int demo ::y=20;
int main()
{
demo ob;
cout<<"Printing Through Object Name : ";
ob.print();

cout<<"Printing Through Class Name : *;
demo::print();
return O;

¥

Output :

Printing Through Object Name :
Value of x :10

Value of y :20

Printing Through Class Name :
Value of x :10

Value of y :20

Characteristics of Static Function:

e It is initialized to zero when the first object of it’s class is created

no other initialization is permitted.

e Only one copy of that member is created for the entire class and is

shared by all the object of the class.

21

Oops concepts

Notes

Self —instructional material

Qops concepts e It is visible only within the class but its life time is the entire

program.

Notes 4.3Write a Program to find swapping of two values Using
Friend function

#include<iostream.h>
#include<conio.h>
class B;
class A
{ _
private:
int x;
public:
void setx()
{
cout<<™\n enter x";
cin>>Xx;
}
friend void swap (A,B);

}

class B
{ .
private:
inty;
public:
void sety()
{

cout<<"\n enter y";
cin>>y;

}

friend void swap (A,B);

}

void swap (A 01,B 02)
{ -
int temp;
cout<<"\nBefore swapping:"<<x<<"\t"<<y;
temp=01.x;
0l.x=02.y,
02.y=temp;
cout<<"\nAfter swapping x="<<0l.x<<"y="<<ol.y;

}

void main()

{

Ap;
Ba;

Self —instructional material 22

clrscr();
p.setx();

q.sety();
swap(p,q);
getch();

ks

OUTPUT
*khkkkkikkikk
Enter x: 2
Enter y: 3

Before swapping

x=2 y=3
After swapping

x=3 y=2

4.4Write a Program for Matrix Using Constructor and
Destructor

#include<iostream.h>
#include<conio.h>

class matrix
{
int **p;
int d1,d2;
public:
matrix(int x,int y);
void getelement(int i,intj,int value)
{
pli][i]=value;
}
int &putelement(int i,int j)
return p[i][j];
}
~matrix();
Y
matrix::matrix(int x,int y)
{
di=x;
d2=y;

p=new int *[d1];
for(int i=0;i<d1;i++)
p[i]=new int [d2];
}

matrix::~matrix()

{

23

Oops concepts

Notes

Self —instructional material

Oops concepts

Notes

Self —instructional material

for(int i=0;i<dl;i++)
delete p[i]; //row by row deletion
delete p; // Reference for that matrix is delelted.
cout<<"\nDestroyed";

}
void main()
t
int m,n;
clrscr();
cout<<™\n Enter the size of matrix";
cin>>m>>n;

matrix a(m,n);
cout<<"\n Enter matrix elements row by row";
int i,j,value;
for(i=0;i<m;i++)
for(j=0;j<n;j++)
{
cin>>value;
a.getelement(i,j,value);

}

cout<<’\n”<<a.putelement(1,1)<<"is the element in the 1st
row 1st column™;

¥
getch();
¥

Output:
Enter the size of matrix: 3 3
Enter matrix elements row by row

7 8 9

2 3 4

5 6 7

3 is the element in the 1st row 1st column
Destroyed

4.5Complex number Addition Using Operator Overloading

#include<iostream.h>
class complex
{
int a,b;
public:
complex()
{
}

complex(int x,int y)
24

%

a=Xx;
b=y;

}

friend complex operator +(complex,complex);

void display()

{

cout<<"The Complex Number Is...\n";
cout<<a<<"+"<<b<<"j";

hy

complex operator +(complex ob,complex obl)

{

complex ob2;
ob2.a=ob.a+obl.a;
ob2.b=ob.b+obl.b;
return ob2;

int main()

¥

float al,b1,a2,b2;
cout<<"Enter The Real Part :";
cin>>al>>a2;

complex m(al,a2);
cout<<"Enter The ImaginoryPart :";
cin>>p1>>p2;
complex(bl,b2);

complex s;

s=m+n;

s.disp();

return 0;

Output :
Enter The Real Part :

32

Enter The Imaginary Part :

32

The Complex Number Is...

6 +4j

4.6 Write a Program for Factorial Using Recursion

#include<iostream>

int f(int n)

{
if(n<=1)
{

return 1;
25

Oops concepts

Notes

Self —instructional material

Oops concepts

Notes

Self —instructional material

¥

else

{

¥
¥

int main()

return n*f(n-1);

int num;

cout<<"Enter Number :";
cin>>num;

cout<<"Factorial Is ="<<f(num);
return O;

¥

Output :
Enter Number : 4
Factorial Is =24

UNIT 5
Inheritance and Polymorphism:
Inheritance types and polymorphism,
Virtual function

5.1 Write a Program for Product Details using Multilevel
Inheritance

#include<iostream.h>
#include<conio.h>
class product
{
protected:
int pno;
float up,qty;
char pname[20];
public:
void get();

vénid product::get()

cout<<"\nEnterPno,Pname,Qty and Unit Price(in float):";
cin>>pno>>pname>>qty>>up;

class calculation:public product

{

26

protected:
float tot;
public:
void calc();
¥
void calculation::calc()
{
tot=up*qty;
}
class result:public calculation
{
public:
void put();
¥
void result::put()
{
cout<<"\nPNo :"<<pno;
cout<<"\nPName :"<<pname;
cout<<"\nQty :"<<qty;
cout<<™\nUPrice:"<<up;
cout<<"\nTotal:"<<tot;
}
void main()
{
result o;
clrscr();
0.get();
o.calc();
0.put();
getch();
}
Output:
*kkkkkhkikk
Enter Pno,Pname,Qty and Unit Price(in float):
101 LUX 2 12.50
PNo 101
PName: LUX
Qty 2
UPrice : 12.50
Total : 25.00

Function Overloading:

Using a single function name to perform different type

of task is known as Function Overloading.

27

Oops concepts

Notes

Self —instructional material

Oops concepts

-5.2 Write a program for volume of different shapes using
function overloading
Notes
#include<iostream.h>
#include<conio.h>
class function
{
public:
float volume(int a)
{
int cube;
cube=a*a*a;
return(cube);
}
float volume(float a,float b)
float cylinder;
cylinder=3.14*a*a*b;
return(cylinder);
}
float volume(int a,intb,int c)
{
int rectangle;
rectangle=a*b*c;
return(rectangle);
}
double volume(double a)
double sphere;
sphere=(4/3)*3.14*a*q;
return(sphere);
}
Y
void main()
{
function f;
int ch;
do
{
cout<<"\n 1.Cube";
cout<<"\n 2.Cylinder";
cout<<"\n 3.Rectangle";
cout<<"\n 4.Sphere";
cout<<"\n 5.Exit";
cout<<"\n Enter your choice";
cin>>ch;
switch(ch)
{
case 1.

cout<<"\n cube="<<f.volume(3);
Self —instructional material 28

Oops concepts

break;
case 2:
cout<<"\n cylinder="<<f.volume(3.0,2.0);
break; Notes
case 3:
cout<<"\n rectangle="<<f.volume(2,4,3);
break;
case 4.
cout<<"\n sphere="<<f.volume(4);
break;
}
Jwhile(ch!=5);
getch();
}

Output:

1. Cube

2. Cylinder

3. Rectangle

4. Sphere

5. Exit

Enter your choice: 1

Cube: 27

Virtual Function:

e A virtual function a member function which is declared
within a base class and is redefined(Overridden) by
derived class.

e They are mainly used to achieve Runtime polymorphism.

e Functions are declared with a virtual keyword in base
class.

5.3Write a Program for Book Details Using Virtual
Function

#include<iostream.h>
#include<conio.h>
#include<string.h>

class media
{
protected:
char title[50];
float price;
public:
media(char *s,float a)
{
strepy(title,s);
29

Self —instructional material

Oops concepts

Notes

Self —instructional material

price=a;

}
virtual void disp() {}

h3
class book :public media
t
int pages;
public:
book(char *s,floata,int p) : media(s,a)
{
pages=p;
}
void disp();
Y
class tape : public media
{
float time;
public:
tape(char *s,floata,float t) : media(s,a)
{
time=t;
}
void disp();
¥
void book :: disp()
{
cout<<"\n title :\t"<<title;
cout<<"\n pages :\t"<<pages;
cout<<"\n price :\t"<<price;
}

void tape :: disp()
{

cout<<"\n title :\t"<<title;
cout<<"\n play time :\t"<<time<<"mins";
cout<<"\n price :\t"<<price;
}
void main()
{
char *title=new char[30];
float price,time;
int pages;
clrscr();
Cout<<"\n *hkkkhkhkhkhkhkhkhkhikhkhhhkhiix.

cout<<"\n VIRTUAL FUNCTION:";
COUt<<"\n ***********************";
cout<<"\n \n enter book details";
cout<<"\n title";
cin>>title;
cout<<"\n price";
cin>>price;
cout<<"\n pages";

30

cin>>pages;

book bookl(title , price , pages);
cout<<"\n enter tape details ";
cout<<"\n title™;

cin>>title;

cout<<"\n price";

cin>>price;

cout<<"\n play time(mins)";
cin>>time;

tape tapel(title , price ,time);
media * list[2];
list[0]=&book1;
list[1]=&tapel;

cout<<"\n media details";

cout<<"\nBook........... "
list[0]->disp();
cout<<"\nTape............ "
list[1]->disp();
getch();

}

Output:

*khkhhhkhkkkkhkhkhkhihhhhhkhhkhkhiiiihiihhdhiix

VIRTUAL FUNCTION

*khkhhhkhkkkkhkhkhkhihhhhhkhhkhkhiiiihiihhdhiix

Enter Book details

Title: roja
Price: 155
Pages: 256

Enter tape details

Title: vijay

Price: 890
Playtime(mins): 45

Media details

........................... BooK......cooevieiic
Title: roja

Pages: 256

Price: 155

............................. Tape. i

Title: vijay
Playtime: 45mins
Price: 890

31

Oops concepts

Notes

Self —instructional material

Oops concepts

Notes

Self —instructional material

UNIT 6 FILE

Open a File :

The first operation generally performed on an object of one of these
classes is to associate it to a real file. This procedure is known as to open
a file.

Syntax :
open(filename,mode);
Close a File:

When we are finished with our input and output operations on a file
we shall close it is close a file.
Syntax:

myfile.close();

6.1 Write a Program for Student Details Using File
Concepts

#include<iostream.h>
#include<conio.h>
#include<fstream.h>
class student
{
int rno,fa;
char name[25],res[25];
float m[6],tot,avg;
ofstream of;
ifstream inf;
public:
student(int x)
{
a=x;
of.open("data.txt",ios::out);
}
void get()
{
for(int i=0;i<a;i++)
{
cout<<"\nEnter the roll no:";
cin>>rno;
of<<rno<<endl;
cout<<"\nEnter the name:";
cin>>name;
of<<name<<endl;
for(int i=1;i<=5;i++)
{
cout<<"\nEnter the mark:"<<i<<":";
cin>>m[i];

32

of<<m[i]<<endl,

calc();

of.close();

void calc()

tot=0;
for(int 1=1;1<=5;1++)
tot=tot+m[l];
of<<tot<<endl;
avg=tot/5;
of<<avg<<endl,
f=0;
for(int a=1;a<=5;a++)
{
if(m[a]>40)
f=f+1;
}
if(f==5)
of<<"Pass"<<endl;
else
of<<"Fail"<<endl;

}
void disp()
{

inf.open("data.txt");

cout<<’RNO\tName\tMark1\t Mark2\tMark3
<< \tMark4\tMark5\tTot\tAvg\tResult\n”;

for(int i=0;i<a;i++)
t
inf>>rno;
inf>>name;

¥

cout<<rno<<"\t"<<name<<endl;
for(int j=1;j<=5;j++)

inf>>m[i];
cout<<m[i]<<endl;
}
inf>>tot;
cout<<tot<<"\t";
inf>>avg;
cout<<avg<<"\t";
inf>>res;
cout<<res<<"\t";

inf.close();

o rn et

33

Oops concepts

Notes

Self —instructional material

Oops concepts

Notes

Self —instructional material

void main()

t
Int a;
clrscr();

cout<<"\nEnter the no. of students:";

cin>>a;
student s(a);
s.get();
s.disp();
getch();

}
Output:

Enter the no. of students: 2

Enter the name : Shahid
Enter the roll no: 112
Enter the markl: 50
Enter the mark2 : 50
Enter the mark3: 50
Enter the mark4 : 50
Enter the mark5: 50
Enter the name : Priyanka
Enter the roll no: 113
Enter the markl: 70
Enter the mark2: 70
Enter the mark3: 70
Enter the markd : 70
Enter the mark5: 70

RNO Name Markl Mark2 Mark3 Mark4 Mark5 Tot Avg

Result

112 Shahid 50 50 50 50 50 250 50
Pass

113 Priyanka 70 70 70 70 70 350 70
Pass

Input and Output Header Files In Files

e Ofstream: Stream class to write on files
e |fstream: Stream class to read from files
e fstream: Stream class to both read and write from/to files.

34

UNIT 7 POINTERS

7.1Write Program for Swapping Of Two Numbers Using
Pointers

#include<iostream.h>
#include<conio.h>
void main()
{
int *a,*b,*temp;
cout<<"Enteraand b:";
cin>>*a>>*h;
temp=a;
a=b;
b=temp;
cout<<"After Swapping \n ";
cout<<"a="<<*a<<"\n"<<"p="<<*h;
getch();
}

Output:
Enteraand b :5
4

After Swapping
a=4

b=5

7.2 Write a Program for Array of Pointers

#include<iostream.h>
#include<string.h>
int main()
{
int i=0;
char *p[10]={"cpp","java","c#","vb"};
char s[20];
cin>>s;
for(i=0;i<4;i++)
{
if(stremp(s,*p[i]))
{
cout<<"Book Name Exists";
break;

35

Oops concepts

Notes

Self —instructional material

Oops concepts

Notes

Self —instructional material

}
if(i==4)
{
cout<<"Not Found";
}
return O;
}
Output :
Enter Book Name :
java

Book Name Exists
C Programming
Not Found

36

BLOCK 3
LINEAR DATA STRUCTURE

UNIT- 8 Stacks: Stack Implementation,
expression evaluation, Polish notation

Stack Implementation in C++:

A stack is a linear data structure than serves as a container of
objects that are inserted and removed according to the LIFO(last-in-first-
out) rule.

Below stack implementation in C++ covers below opertation:

1. push: Inserts a new element at the top of the stack, above its
current top element.

2. pop: Removes the top element on the stack, thereby
decrementing its size by one.

3. ISEmpty: Returns true if stack is empty i.e. its size is zero
else it returns false.

4. isFull: Returns true if stack is full i.e. its size has reached
maximum allocated capacity else it returns false.

5. Size: Returns the count of elements present in the stack.

8.1 Stack using array

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
int s[20],n,top;

void stack();

void push();
void pop();
void disp();
void main()
{
clrscr();
stack();
int ch;
do
{
cout<<"\nEnter option->1.push 2.pop 3.display
4.exit:";
cin>>ch;
switch(ch)
{

37

Linear data structure

Notes

Self —instructional material

Linear data structure

Notes

Self —instructional material

case 1:push();break;
case 2:pop(); break;
case 3:disp();break;
default:exit(0);

break;
}
Iwhile(ch<=4);
}
void stack()
{
top=-1,
cout<<"Enter the size:";
cin>>n;

}
void push()

t
int X;
if(top==n-1)
cout<<"\nStack is full";
else
{
cout<<"\nEnter the element:";
cin>>x;
top++;
s[top]=x;
}
}
void pop()
t
int x;
if(top==-1)
cout<<"\nStack is empty";
else
{
x=s[top];
top--;
cout<<"\n"<<x<<"is deleted from the stack\n";
}
}
void disp()
t
int i
if(top==-1)
cout<<"\nStack is empty";
else
{

cout<<"\nElements of the stack are:\n";
for(i=top;i>=0;i--)

38

cout<<s[i];
cout<<endl;

hy

Output :

Enter the size:3

Enter option->1.push 2.pop 3.display 4.exit:1
Enter the element:10

Enter option->1.push 2.pop 3.display 4.exit:1
Enter the element:20

Enter option->1.push 2.pop 3.display 4.exit:1
Enter the element:30

Enter option->1.push 2.pop 3.display 4.exit:1
Stack is full

Enter option->1.push 2.pop 3.display 4.exit:3
Elements of the stack are:

10

20

30

Enter option->1.push 2.pop 3.display 4.exit:2
30is deleted from the stack

Enter option->1.push 2.pop 3.display 4.exit:3
Elements of the stack are:

10

20

Enter option->1.push 2.pop 3.display 4.exit:4

Expression evaluation:

This C++ program, using a stack data structure, computes value of
postfix expression which pushes operands and pops these values on
encountering an operator.

Polish notation:

Polish notation (PN), also known as normal Polish notation
(NPN), Polish prefix notation or simply prefix notation, is a
mathematical notation in which operators precede their operands, in
contrast to the more common infix notation, in which operators are placed
between operands, as well as reverse Polish notation (RPN), in which
operators follow their operands. It does not need any parentheses as long
as each operator has a fixed number of operands.

39

Linear data structure

Notes

Self —instructional material

Linear data structure

Notes

Self —instructional material

UNIT 9
Queues: Queue Implementation,
Applications of Queue

Queue Implementation

A queue is an abstract data structure that contains a collection of
elements. Queue implements the FIFO mechanism i.e. the element that is
inserted first is also deleted first. In other words, the least recently added
element is removed firs in a queue.

Applications of Queue Data Structure
Breadth First Search property of Queue makes it also useful in
following kind of scenarios.
1. When a resource is shared among multiple consumers.
Examples include CPU scheduling, Disk Scheduling.
2. When data is transferred asynchronously (data not necessarily
received at same rate as sent) between two processes. Examples
include 10 Buffers, pipes, file 10, etc.

9.1 Queue Using Array

#include <iostream.h>
#include <conio.h>
#include <stdlib.h>
class queue
{
int q[20],n,f,r,Xi;
public:
queue()
{
clrscr();
f=-1;
r=-1,
cout<<"\nEnter the n value: \t";
cin>>n;
}
void enqueue();
void dequeue();

void disp();
Y
void queue::enqueue()
{
if(r==n-1)
{
cout<<"\nQueue is full"<<endl;
}
else
{

40

cout<<"Enter a element to queue: \t";

cin>>x;
if(f==-1)
=0,
r=r+1;
qlrl=x;
}
}
void queue::dequeue()
{
if (r==f==-1||r<f)
{
cout<<"\nQueue is empty"<<endl;
}
else
{
cout<< "Deleted from the queue;";
x=q[f];
cout<<x<<endl;
f=f+1;
}
}
void queue::disp()
{
if(r==f==-1||r<f)
{
cout<<"\nQueue is empty"<<endl;
}
else
{
cout<<"Elements of the queue are: ";
for(i=f;i<=r;i++)
{
cout<<endl:
cout<<q[i];
}
}
Y
void main()
{
int ch;
queue q;
clrscr();
cout<<"\t\WQUEUE\n";
do
{

cout<<"\n\n1l.Enqueue 2.Dequeue 3.Display 4.Exit\n";
cout<<"\nEnter your choice: \t";

cin>>ch;

switch(ch)

{

41

Linear data structure

Notes

Self —instructional material

Linear data structure

case 1:
g.enqueue();
break;
case 2:
Notes g.dequeue();
break;
case 3:
q.disp();
break;
case 4:
exit(0);
default:
cout<<"\nEnter 1to4 values: ";
}
Jwhile(1)
Output:
Queue
Enter the n value:
3

1.Enqueue 2.Dequeue 3.Display 4.Exit
Enter your choice:

1

Enter a element to queue

10

1.Enqueue 2.Dequeue 3.Display 4.Exit
Enter your choice:

1

Enter a element to queue

20

1.Enqueue 2.Dequeue 3.Display 4.Exit
Enter your choice:

1

Enter a element to queue

30

1.Enqueue 2.Dequeue 3.Display 4.Exit
Enter your choice:

1
Queue is full
UNIT 10
Linked List programs
List

A list or sequence is an abstract data type that represents a
countable number of ordered values, where the same value may occur
more than once. An instance of a list is a computer representation of the
mathematical concept of a finite sequence; the (potentially) infinite analog
of a list is a stream. Lists are a basic example of containers, as they

Self —instructional material 42

contain other values. If the same value occurs multiple times, each
occurrence is considered a distinct item.

Merging lists

You’re given the pointer to the head nodes of two sorted linked
lists. The data in both lists will be sorted in ascending order. Change the
next pointers to obtain a single, merged linked list which also has data in
ascending order. Either head pointer given may be null meaning that the
corresponding list is empty.

10.1 Write a C++ program to merge two sorted linked lists

#include <bits/stdc++.h>
class Node
{
public:
int data;
Node* next;
3
/* pull off the front node of the source and put it in dest */
void MoveNode(Node** destRef, Node** sourceRef);
/* Takes two lists sorted in increasing order, and splices
their nodes together to make one big sorted list which is
returned. */
Node* SortedMerge(Node* a, Node* b)
{
Node dummy;
Node* tail = &dummy;
dummy.next = NULL;

while (1)

if (@==NULL)

{
tail->next = b;
break;

}

else if (b == NULL)

{
tail->next = a;
break;

}

if (a->data <= b->data)
MoveNode(&(tail->next), &a);
else
MoveNode(&(tail->next), &b);
tail = tail->next;
}

return(dummy.next);

¥

void MoveNode(Node** destRef, Node** sourceRef)
43

Linear data structure

Notes

Self —instructional material

Linear data structure

Notes

Self —instructional material

Node* newNode = *sourceRef;
assert(newNode !'= NULL);
*sourceRef = newNode->next;
newNode->next = *destRef;
*destRef = newNode;
}

void push(Node** head_ref, int new_data)
{

Node* new_node = new Node();
new_node->data = new_data;
new_node->next = (*head_ref);

(*head_ref) = new_node;

}
/* Function to print nodes in a given linked list */
void printList(Node *node)

while (node!=NULL)

{
cout<<node->data<<" ";
node = node->next;

¥
¥

/* Driver code*/
int main()
{
[* Start with the empty list */
Node* res = NULL;
Node* a = NULL;
Node* b = NULL;
/* Let us create two sorted linked liststo test the functions
Created lists, a: 5->10->15, b: 2->3->20 */
push(&a, 15);
push(&a, 10);
push(&a, 5);
push(&b, 20);
push(&b, 3);
push(&b, 2);
res = SortedMerge(a, b);
cout<< "Merged Linked List is: \n";
printList(res);
return O;

}

Output:
Merged Linked List is:
235101520

44

Linked List

A linked list is a linear data structure, in which the elements are
not stored at contiguous memory locations. The elements in a linked list
are linked using pointers .

In simple words, a linked list consists of nodes where each node
contains a data field and a reference(link) to the next node in the list

Single linked list

Singly linked list is a type of data structure that is made up of
nodes that are created using self-referential structures. Each of these
nodes contain two parts, namely the data and the reference to the next list
node. Only the reference to the first list node is required to access the
whole linked list. This is known as the head. The last node in the list
points to nothing so it stores NULL in that part.

10.2 Program For Implement Singly Linked List

#include <iostream>
using namespace std;
struct Node
{
int data;
struct Node *next;
3
struct Node* head = NULL,;
void insert(int new_data) {
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));
new_node->data = new_data;
new_node->next = head;
head = new_node;

}
void display() {

struct Node* ptr;
ptr = head,;

while (ptr '= NULL) {
cout<<ptr->data << ";
ptr = ptr->next;

}
}
int main()
{
insert(3);
insert(1);
insert(7);
insert(2);
insert(9);
cout<<"The linked list is: ";
display();

return O;

45

Linear data structure

Notes

Self —instructional material

Linear data structure

Notes

Self —instructional material

¥

Output :
The linked listis: 92713

Header linked list

A Header linked list is one more variant of linked list. In Header
linked list, we have a special node present at the beginning of the linked
list. This special node is used to store number of nodes present in the
linked list.

Insertion and Deletion of linked list

In this program, we will learn how to implement Linked List using
C++ program

In this example, we will implement a singly linked list with insert,
delete and display operations. Here, we will declare Linked List Node,
Insert Node at the beginning, Delete Node from beginning and display all
linked list Nodes.

10.3Program ForLinked List Implementation

#include <iostream>
struct Node{
int num;
Node *next;
}
struct Node *head=NULL;
void insertNode(int n){
struct Node *newNode=new Node;
newNode->num=n;
newNode->next=head;
head=newNode;

}
void display(){
if(head==NULL){
cout<<"List is empty!"<<endl;
return;
}
struct Node *temp=head;
while(temp!=NULL){
cout<<temp->num<<"";
temp=temp->next;

}

cout<<endl:

void deleteltem(){
if(head==NULL){
cout<<"List is empty!"<<endl;
return;

¥

46

cout<<head->num<<" is removed."<<endl;
head=head->next;
}
int main()
{
display();
insertNode(10);
insertNode(20);
insertNode(30);
insertNode(40);
insertNode(50);
display();
deleteltem(); deleteltem(); deleteltem(); deleteltem(); deleteltem();
deleteltem();
display();
return 0;
}
Output
List is empty!
5040302010
50 is removed.
40 is removed.
30 is removed.
20 is removed.
10 is removed.
List is empty!
List is empty!

Traversal in a List

In this program the start pointer points to the beginning of the list
and rear points to the last node

The function create_new_node() takes one parameter, allocates
memory to create a new node and returns the pointer to the new node.
(return type: node *)

The function insert_node() takes node * type pointer as argument
and inserts this node in the end of the list.

And the function traversal() takes node * type pointer as
argument and displays the list from this pointer till the end of the list.

10.4 Program of Linked Lists Traversal in a list

#include<iostream.h>
#include<conio.h>
#include<process.h>
struct node

{

int info;

47

Linear data structure

Notes

Self —instructional material

Linear data structure

Notes

Self —instructional material

node *next;
} *start, *newptr, *save, *ptr, *rear;
node *create_new_node(int);
void insert_node(node *);
void travers(node *);

void main()
{
clrscr();
start = rear = NULL;
int inf;
char ch="y";

while(ch=="y" || ch=="Y")

cout<<"Enter Information for the new node: ";
cin>>inf;

newptr = create_new_node(inf);

if(newptr == NULL)

{

cout<<"\nPress any key to exit..";
getch();
exit(1);
}
insert_node(newptr);
cout<<"Want to enter more nodes ? (y/n)..";
cin>>ch;
cout<<™\n";
}
cout<<"The list now is:\n";
travers(start);
getch();
}

node *create_new_node(int n)
{
ptr = new node;
ptr->info = n;
ptr->next = NULL;
return ptr;

}

void insert_node(node *np)

{
if(start==NULL)

{
¥

else

{

start = rear = np;

rear -> next = np;
rear = np,

48

void travers(node *np) Linear data structure

while(np '= NULL)

{ Notes
cout<<np->info<<" ->",
np = np->next;

}

cout<<" In";

ks

Here is the sample run of this C++ program
Enter Information for the new node: 10
Want to enter more nodes ? (y/n)..y

Enter Information for the new node: 20
Want to enter more nodes ? (y/n)..y

Enter Information for the new node: 30
Want to enter more nodes ? (y/n)..y

Enter Information for the new node: 40
Want to enter more nodes ? (y/n)..y

The list now is:
10->20-> 30-> 40-> !l

49 Self —instructional material

Non-linear data structure

Notes

Self —instructional material

BLOCK 4
NON-LINEAR DATASTRUCTURE

UNIT 11
Tree Programs

Tree:

A tree is a collection of nodes connected by directed (or undirected)
edges. A tree is a nonlinear data structure, compared to arrays, linked lists,
stacks and queues which are linear data structures.

Binary trees:

A binary tree is made of nodes, where each node contains a "left"
reference, a "right™ reference, and a data element. The topmost node in the
tree is called the root. ... On the other hand, each node can be connected to
arbitrary number of nodes, called children. Nodes with no children are
called leaves, or external nodes.

Following are common types of Binary Trees.

Full Binary Tree A Binary Tree is full if every node has 0 or 2
children. Following are examples of a full binary tree. We can also say a
full binary tree is a binary tree in which all nodes except leaves have two
children.

18
[\
15 30
/\ I\
40 50 100 40

18
/\
15 20
I\
40 50
/\
30 50

[\
40 30
/\
100 40
In a Full Binary, number of leaf nodes is number of internal nodes plus 1

L=1+1
Where L = Number of leaf nodes, | = Number of internal nodes

50

See Handshaking Lemma and Tree for proof. Non-linear data structure

Complete Binary Tree: A Binary Tree is complete Binary Tree if
all levels are completely filled except possibly the last level and the last

level has all keys as left as possible
Notes

Following are examples of Complete Binary Trees

18
[\
15 30
I\ 1\
40 50 100 40
18
[\
15 30
I\ I\
40 50 100 40
I\
8 79

Practical example of Complete Binary Tree is Binary Heap.

Perfect Binary Tree a Binary tree is Perfect Binary Tree in which
all internal nodes have two children and all leaves are at the same level.
Following are examples of Perfect Binary Trees.

18
[\
15 30
/\ /\
40 50 100 40

18
[\
15 30
A Perfect Binary Tree of height h (where height is the number of
nodes on the path from the root to leaf) has 2h — 1 node.
Example of a Perfect binary tree is ancestors in the family. Keep
a person at root, parents as children, Parents of parents as their children.

Balanced Binary Tree

A binary tree is balanced if the height of the tree is O(Log n)
where n is the number of nodes. For Example, AVL tree maintains
O(Log n) height by making sure that the difference between heights of
left and right sub trees is 1. Red-Black trees maintain O(Log n) height by

51

Self —instructional material

Non-linear data structure

Notes

making sure that the number of Black nodes on every root to leaf paths are
same and there are no adjacent red nodes. Balanced Binary Search trees are
performance wise good as they provide O(log n) time for search, insert and
delete.

A degenerate (or pathological) tree A Tree where every internal
node has one child. Such trees are performance-wise same as linked list.

10

A 20

40

Representing Binary Tree

in memory
Let T be a Binary Tree. There are two ways of representing T in the
memory as follow

ILEFT[K]| INFO[k] |RIGHT [K] |

e Sequential
Representation of Binary Tree.
e Link Representation of Binary Tree.

1) Linked Representation of Binary Tree

Consider a Binary Tree T. T will be maintained in memory by
means of a linked list representation which uses three parallel arrays;
INFO, LEFT, and RIGHT pointer variable ROOT as follows. In Binary
Tree each node N of T will correspond to a location k such that

LEFT [K] contains the location of the left child of node N.
INFO [K] contains the data at the node N.
RIGHT [K] contains the location of right child of node N.

Representation of a node:
Node Representation

In this representation of binary tree root will contain the location of
the root R of T. If any one of the sub tree is empty, then the corresponding
pointer will contain the null value if the tree T itself is empty, the ROOT
will contain the null value.

Example

Consider the binary tree T in the figure. A schematic diagram of the
linked list representation of T appears in the following figure. Observe that
each node is pictured with its three fields, and that the empty sub tree is
pictured by using x for null entries.

Self —instructional material 52

ROOT

Binary Tree
Binary tree node representations
Linked Representation of Binary Tree

2) Sequential representation of Binary Tree

Let us consider that we have a tree T. let our tree T is a binary
tree that us complete binary tree. Then there is an efficient way of
representing T in the memory called the sequential representation or
array representation of T. This representation uses only a linear array
TREE as follows:

The root N of T is stored in TREE [1].
If a node occupies TREE [K] then its left child is stored in TREE [2 * K]
and its right child is stored into TREE [2 * k + 1].

For Example:
Consider the following Tree:

53

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure Sequential Representation of Binary Tree
Its sequential representation is as follow:

Notes Sequential Representation of Binary Tree 1

Traversing Binary Trees

Traversing a tree means visiting every node in the tree. You might for
instance want to add all the values in the tree or find the largest one. For all
these operations, you will need to visit each node of the tree.

Linear data structures like arrays, stacks, queues and linked list have only
one way to read the data. But a hierarchical data structure like a tree can be
traversed in different ways.

Depending on the order in which we do this, there can be three types of
traversal.

Inorder traversal
1. First, visit all the nodes in the left subtree
2. Then the root node
3. Visit all the nodes in the right subtree
inorder(root->left)
display(root->data)
inorder(root->right)

(alsf[clo|[-[EJF[-[H] | |

Preorder traversal
1. Visit root node
2. Visit all the nodes in the left subtree
3. Visit all the nodes in the right subtree
display(root->data)
preorder(root->left)
preorder(root->right)

Postorder traversal
1. visit all the nodes in the left subtree
2. visit the root node
3. visit all the nodes in the right subtree
postorder(root->left)
postorder(root->right)
display(root->data)

Self —instructional material 54

Binary search tree

Binary Search Tree is a node-based binary tree data structure
which has the following properties:

The left subtree of a node contains only nodes with keys lesser
than the node’s key.

The right subtree of a node contains only nodes with keys greater
than the node’s key.

The left and right subtree each must also be a binary search tree.

Insertion in Binary Search Tree:

Check whether root node is present or not(tree available or not).
If root is NULL, create root node.

If the element to be inserted is less than the element present in the
root node, traverse the left sub-tree recursively until we reach T->left/T-
>right is NULL and place the new node at T->left(key in new node < key
in T)/T->right (key in new node > key in T).

If the element to be inserted is greater than the element present in root
node, traverse the right sub-tree recursively until we reach T->left/T-
>right is NULL and place the new node at T->left/T->right.

Deletion in Binary Search Tree:
How to delete a node from binary search tree?

There are three different cases that needs to be considered for
deleting a node from binary search tree.

11.1 Program for Insertion, Deletion and Traversal in
Binary Search Tree

#include <stdio.h>
#include <stdlib.h>
struct treeNode {
int data;
struct treeNode *left, *right;
3
struct treeNode *root = NULL;
struct treeNode* createNode(int data) {
struct treeNode *newNode;
newNode = (struct treeNode *) malloc(sizeof (struct treeNode));

55

Non-linear data structure

Notes

Self —instructional material

newNode->data = data;

Non-linear data structure newNode->left = NULL;
newNode->right = NULL;
return(newNode);
}
void insertion(struct treeNode **node, int data) {
Notes if (*node == NULL) {

*node = createNode(data);
} else if (data < (*node)->data) {
insertion(&(*node)->left, data);
} else if (data > (*node)->data) {
insertion(&(*node)->right, data);
}

¥

void deletion(struct treeNode **node, struct treeNode **parent, int data)
{
struct treeNode *tmpNode, *tmpParent;
if (*node == NULL)
return;
if ((*node)->data == data) {
if (1(*node)->left && !(*node)->right) {
if (parent)
if ((*parent)->left == *node)
(*parent)->left = NULL;
else
(*parent)->right = NULL;
free(*node);

}else {

free(*node);

¥
} else if (}(*node)->right && (*node)->left)
tmpNode = *node;
(*parent)->right = (*node)->left;
free(tmpNode);
*node = (*parent)->right;
} else if ((*node)->right && !(*node)->left) {
tmpNode = *node;
(*parent)->left = (*node)->right;
free(tmpNode);
(*node) = (*parent)->left;
} else if (}(*node)->right->left)
tmpNode = *node;
(*node)->right->left = (*node)->left;
(*parent)->left = (*node)->right;
free(tmpNode);
*node = (*parent)->left;
}else {
tmpNode = (*node)->right;
while (tmpNode->left) {
tmpParent = tmpNode;
tmpNode = tmpNode->left;

¥

Self —instructional material 56

tmpParent->left = tmpNode->right; Non-linear data structure
tmpNode->left = (*node)->left;
tmpNode->right =(*node)->right;
free(*node);
*node = tmpNode;
} Notes
} else if (data < (*node)->data) {
deletion(&(*node)->left, node, data);
} else if (data > (*node)->data) {
deletion(&(*node)->right, node, data);
}

by

void findElement(struct treeNode *node, int data) {
if ('node)
return;

else if (data < node->data) {
findElement(node->left, data);

} else if (data > node->data) {
findElement(node->right, data);

} else
printf("data found: %d\n", node->data);

return;

¥

void traverse(struct treeNode *node) {
if (node '= NULL) {
traverse(node->left);
printf("%3d", node->data);
traverse(node->right);
}

return;

int main() {
int data, ch;
while (1) {
printf("1. Insertion in Binary Search Tree\n");
printf("2. Deletion in Binary Search Tree\n");
printf(3. Search Element in Binary Search Tree\n");
printf(4. Inorder traversal\n5. Exit\n");
printf("Enter your choice:");
scanf("%d", &ch);
switch (ch) {
case 1:
while (1) {
printf("Enter your data:");
scanf("%d", &data);
insertion(&root, data);
printf("Continue Insertion(0/1):");
scanf("%d", &ch);
if (ch)
break;

57 Self —instructional material

Non-linear data structure

Notes

Self —instructional material

}
break:

case 2:
printf("Enter your data:");
scanf(%d", &data);
deletion(&root, NULL, data);
break;
case 3:
printf("Enter value for data:");
scanf("%d", &data);
findElement(root, data);
break;
case 4:
printf("Inorder Traversal:\n");
traverse(root);
printf("\n");
break;
case 5:
exit(0);
default:
printf(“u've entered wrong option\n™);
break;
}
}
return O;

¥

Output:

1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:1
Enter your data:20
Continue Insertion(0/1):1
Enter your data:14
Continue Insertion(0/1):1
Enter your data:9
Continue Insertion(0/1):1
Enter your data:19
Continue Insertion(0/1):1
Enter your data:25
Continue Insertion(0/1):1
Enter your data:21
Continue Insertion(0/1):1
Enter your data:23
Continue Insertion(0/1):1
Enter your data:30
Continue Insertion(0/1):1
Enter your data:26
Continue Insertion(0/1):0

58

Resultant Binary Search Tree after insertion operation:

20
I\
14 25
[N\
9 1921 30
\
23 26

1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:4
Inorder Traversal:
91419202123252630
1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:2
Enter your data:9

Delete node 9

20
14 25
l". / I".
1921 30
v
23 26
1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:4
Inorder Traversal:
14 19 20 21 23 25 26 30
1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:2
59

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure

Notes

Enter your data:14

Delete node 14

20
[\
19 25
[\
21 30
\
23 26

1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:4
Inorder Traversal:
1920 21 23 25 26 30
1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:2
Enter your data:30

Delete node 30

20
[\
19 25
[\
21 26
\
23

1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:4
Inorder Traversal:
1920212325 26
1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit

Self —instructional material 60

Enter your choice:2

Enter your data:20
Delete node 20
21
[\
19 25
/\
23 26

1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:4
Inorder Traversal:
19212325 26
1. Insertion in Binary Search Tree
2. Deletion in Binary Search Tree
3. Search Element in Binary Search Tree
4. Inorder traversal
5. Exit
Enter your choice:1
Enter your data:15
Continue Insertion(0/1):1
Enter your data:14
Continue Insertion(0/1):1
Enter your data:16
Continue Insertion(0/1):1
Enter your data:17
Continue Insertion(0/1):0

Binary Search Tree After Insertion Operation:

21
I\
19 25
/ /\
15 23 26
/\
14 16
\
17

1. Insertion in Binary Search Tree

2. Deletion in Binary Search Tree

3. Search Element in Binary Search Tree
4. Inorder traversal

5. Exit

61

Non-linear data structure

Notes

Self —instructional material

Enter your choice:4

Non-linear data structure Inorder Traversal:

Notes

Self —instructional material

141516 17 1921 2325 26

1. Insertion in Binary Search Tree

2. Deletion in Binary Search Tree

3. Search Element in Binary Search Tree
4. Inorder traversal

5. Exit

Enter your choice:2

Enter your data:15

Delete Node 15

21
[\
19 25
/ /\
16 23 26
[\
14 17

1. Insertion in Binary Search Tree

2. Deletion in Binary Search Tree

3. Search Element in Binary Search Tree
4. Inorder traversal

5. Exit

Enter your choice:4

Inorder Traversal:

1416 17 19 21 23 25 26

1. Insertion in Binary Search Tree

2. Deletion in Binary Search Tree

3. Search Element in Binary Search Tree
4. Inorder traversal

5. Exit

Enter your choice:3

Enter value for data:21

data found: 21

1. Insertion in Binary Search Tree

2. Deletion in Binary Search Tree

3. Search Element in Binary Search Tree
4. Inorder traversal

5. Exit

Enter your choice:5

62

UNIT 12 Graphs

A Graph is a non-linear data structure consisting of nodes and edges. The
nodes are sometimes also referred to as vertices and the edges are lines or
arcs that connect any two nodes in the graph.

Dijkstra’s Algorithm

Dijkstra's algorithm has many variants but the most common one is
to find the shortest paths from the source vertex to all other vertices in the
graph.
Algorithm Steps:

1. Set all vertices distances = infinity except for the source vertex,
set the source distance =0 .

2. Push the source vertex in a min-priority queue in the form
(distance , vertex), as the comparison in the min-priority queue
will be according to vertices distances.

3. Pop the vertex with the minimum distance from the priority
queue (at first the popped vertex = source).

4. Update the distances of the connected vertices to the popped

vertex in case of "current vertex distance + edge weight < next

vertex distance”, then push the vertex

With the new distance to the priority queue.

6. If the popped vertex is visited before, just continue without using
it.

7. Apply the same algorithm again until the priority queue is empty.

o

12.1Dijkstra program

#include<iostream>

#include<climits>

using namespace std;

#define vertex 7

int minimumDist(int dist[], bool Dset[])

{
int min=INT_MAX,index;
for(int v=0;v<vertex;v++)

if(Dset[v]==false &&dist[v]<=min)
{

min=dist[v];
index=v;

}
oo
return index;

63

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure

void dijkstra(int graph[vertex][vertex],int src)
Notes { . .
int dist[vertex];
bool Dset[vertex];
for(int i=0;i<vertex;i++)
{
dist[i][=INT_MAX;
Dset[i]=false;
}
dist[src]=0;
for(int c=0;c<vertex;c++)
{
int u=minimumDist(dist,Dset);
Dset[u]=true;
for(int v=0;v<vertex;v++)
{
if('Dset[v] && graph[u][v] &&dist[u]!=INT_MAX
&&
dist[u]+graph[u][v]<dist[v])
dist[v]=dist[u]+graph[u][v];
¥
}
cout<<"Vertex\t\tDistance from source"<<endl;
for(int i=0;i<vertex;i++)
{
char c=65+i;
cout<<c<<"\t\t"<<dist[i]<<endl;
}
}
int main()

{ -

int
graph[vertex][vertex]={{0,5,3,0,0,0,0},{0,0,2,0,3,0,1},{0,0,0,7,7,0,0},{2,0
,0,0,0,6,0%},{0,0,0,2,0,1,0},{0,0,0,0,0,0,0}, {0,0,0,0,1,0,0}};

dijkstra(graph,0);

return O;

Vertex Distance from source

OGTMMmMOoOO®@>
o P®~Nowuo

Self —instructional material 64

Graphs with Negative Edge costs

C++ Programming examples on “Shortest Path” Bellman—Ford
algorithm is an algorithm that computes shortest paths from a single source
vertex to all of the other vertices in a weighted digraph. Floyd—Warshall
algorithm is an algorithm for finding shortest paths in a weighted graph
with positive or negative edge weights.

12.2 Floyd Warshall Algorithm

#include <iostream>
#include <vector>
#include <iomanip>
#include <climits>
using namespace std;
/l Data structure to store graph edges
struct Edge

{
}

int source, dest, weight;

/I Recurive Function to print path of given vertex v from
source vertex
void printPath(vector<int> const &parent, int v)

if (v<0)

return;
printPath(parent, parent[v]);
cout<<v <<

// Function to run Bellman-Ford algorithm from given
source
void BellmanFord(vector<Edge> const &edges, int source, int N)
{
/l count number of edges present in the graph
int E = edges.size();
vector<int> distance (N, INT_MAX);
distance[source] = 0;
vector<int> parent (N, -1);
intu, v, w, k=N;

/I Relaxation step (run V-1 times)
while (--k)
{
for (int j=0; j < E; j++)
{
/[edge from u to v having weight w
u = edges[j].source, v = edges][j].dest;
w = edges[j].weight;

65

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure

Notes

Self —instructional material

If (distance[u] != INT_MAX && distance[u] + w <

{

// update distance to the new lower value
distance[v] = distance[u] + w;

distance[V])

/I set v's parent as u
parent[v] = u;

}
}
}
for (inti=0; i< E; i++)
{

// edge from u to v having weight w
u = edges[i].source, v = edges[i].dest;
w = edges[i].weight;
if (distance[u] '= INT_MAX && distance[u] + w <
distance[v])

{
cout<< "Negative Weight Cycle Found!!";
return;
}
}
for (int i =0; i< N; i++)
{
cout<< "Distance of vertex " <<i<< " from the source is "
<<setw(2) << distance[i] << ". It's pathis [";
printPath(parent, i); cout<< "]" << '\n’;
}
}
// main function
int main()
{
/I vector of graph edges as per above diagram
vector<Edge> edges =
Il (X, y, w) ->edge from x to y having weight w
{0,1,-1},{0,2,4},{1,2,3},{1,3 2},
{1,42}{3,25}{3,1,1},{4,3,-3}
Y
/I Set maximum number of nodes in the graph
int N =5;
/I let source be vertex 0
int source = 0;
// run Bellman-Ford algorithm from given source
BellmanFord(edges, source, N);
return O;
}
Output :

66

Distance of vertex 0 from the source is 0. It’s path is [0]
Distance of vertex 1 from the source is -1. It’s path is [01]
Distance of vertex 1 from the source is 2. It’s path is [012]
Distance of vertex 1 from the source is -2. It’s path is [0143]
Distance of vertex 1 from the source is 1. It’s path is [014]

Acyclic graph

Acyclic graph is a directed graph which contains a path from at
least one node back to itself. ... An acyclic graph is a directed graph which
contains absolutely no cycle, that is no node can be traversed back to itself.

12.3 Program For generate a random DAG (Directed
Acyclic Graph) for a given number of edges.

#include<iostream>

#include<stdlib.h>

/I The maximum number of the vertex for the sample random graph.
#define NOV 20

using namespace std;

/I A function to check for the cycle, on addition of a new edge in the
random graph.

bool CheckAcyclic(int edge[][2], int ed, bool check[], int v)

{

int i;
bool value;
/'1f the current vertex is visited already, then the graph contains
cycle.
if(check[v] == true)
{
return false;
}
else
{
check[v] = true;
/I For each vertex, go for all the vertex connected to it.
for(i = ed; i>=0; i--)
if(edge[i][0] == V)
{
return CheckAcyclic(edge, ed, check, edge[i][1]);
}
}
}

/I In case, if the path ends then reassign the vertexes visited in that
path to false again.
check][v] = false;

67

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure

Notes

Self —instructional material

if(i == 0)
return true;

¥

/I A function to generate random graph.
void GenerateRandGraphs(int e)

{
int i, j, edge[e][2], count;
bool check[21];
// Build a connection between two random vertex.
i=0;
while(i< €)
{
edge[i][0] = rand()%NOV+1;
edge[i][1] = rand()%NOV+1;
for(j = 1; j <= 20; j++)check]j] = false;
if(CheckAcyclic(edge, i, check, edge[i][0]) == true)
i++;
}

// Print the random graph.
cout<<"\nThe generated random random graph is: *;
for(i = 0; i< NOV; i++)

{
count = 0;
cout<<"\n\t"<<i+1<<"->{";
for(j=0; j<e; j++)
{
if(edge[j][0] == i+1)
{
cout<<edge[j][1]<<" *;
count++;

¥

else if(edge[j][1] == i+1)

{

count++;
else if(j == e-1 && count == 0)
cout<<"lsolated Vertex!";
}
cout<<" }";
}
int main()
int e;
cout<<"Enter the number of edges for the random graphs: ";
cin>>e;
/I A function to generate a random undirected graph
with e edges.
GenerateRandGraphs(e);
}

68

Runtime Test Cases
Case 1:
Enter the number of edges for the random graphs: 10

The generated random random graph is:
1->{ }
2->{8 812 }
3->{5 14 }
4->{ Isolated Vertex! }
5->{ }
6->{ Isolated Vertex! }
7->{ Isolated Vertex! }
8->{17 }
9->{ Isolated Vertex! }
10->{5 }
11->{ Isolated Vertex! }
12->{5 }
13->{ Isolated Vertex! }
14->{ }
15->{1 }
16->{3 }
17->{ }
18->{ Isolated Vertex! }
19->{ Isolated Vertex! }
20->{ Isolated Vertex! }

Case 2:
Enter the number of edges for the random graphs: 50

The generated random random graph is:
1->{3 }
2->{88 12 17 12 6 }
3->{5 14 14 18 }
4->{12 2 }
5->{9 15 20 11 13 }
6->{ }
7->{6 2 17 }
8->{177 205 }
9->{7 }
10->{5 13194 2 }
11->{3 10 }
12->{5 19 9 }
13->{3 }
14->{5 99 16 7 }
15->{1 }
16->{3 15 }
17->{16 1 }

69

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure

Notes

Self —instructional material

18->{20 }
19->{16 3 }
20->{ }

All pair shortest paths algorithm

The all-pairs shortest path problem is the determination of the
shortest graph distances between every pair of vertices in a given graph. ...
The matrix of all distances between pairs of vertices is called the graph
distance matrix, or sometimes the all-pairs shortest path matrix.

12.4 Program to implement dynamic programming
algorithm to solve the all pairs shortest path problem

#include<iostream>
#include<conio.h>
using namespace std;
int min(int a,int b);
int cost[10][10],a[10][10],i,},k,c;
int main()
{ -
int n,m;
cout<<"Enter no of vertices";
cin>>n;
cout<<"Enter no od edges";
cin>>m;
cout<<"Ebter the\nEDGE Cost\n";
for(k=1;k<=m;k++)
{ - - -
cin>>i>>j>>c;

afi][i]=cost[i][il=c;

for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
if(@[i][j]== 0 &&i !=j)
a[i][j]=31999;

}

for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
a[il[il=min(aliI[i].a[i[K]+alK]Lil);
cout<<"Resultant adj matrix\n";
for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

if(a[i][j] '=31999)

cout<< a[i][j] <<" "

70

ks

cout<<"\n";

k
getch();

}

int min(int a,int b)
{

if(a<b)

return a;

else

return b;

by

Output :

Enter no of vertices3
Enter no od edges5
Enter the

EDGE Cost

124

216

1311

313

232

Resultant adj matrix
046

502

370

Minimum-cost spanning tree.

A Minimum Spanning Tree (MST) works on graphs with directed
and weighted (non-negative costs) edges. Consider a graph G with n
vertices. The spanning tree is a subgraph of graph G with all its n vertices
connected to each other using n-1 edges.

Kruskal's algorithm

Kruskal's algorithm is a minimum-spanning-tree algorithm which
finds an edge of the least possible weight that connects any two trees in the
forest. It is a greedy algorithm in graph theory as it finds a minimum
spanning tree for a connected weighted graph adding increasing cost arcs
at each step.

Application of Minimum Spanning Tree
1. Consider n stations are to be linked using a communication network
& laying of communication links between any two stations
involves a cost.

71

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure

Notes

Self —instructional material

2. The ideal solution would be to extract a subgraph termed as
minimum cost spanning tree.

3. Suppose you want to construct highways or railroads spanning
several cities then we can use the concept of minimum spanning
trees.

4. Designing Local Area Networks.

5. Laying pipelines connecting offshore drilling sites, refineries and
consumer markets.

6. Suppose you want to apply a set of houses with

e Electric Power
o Water
e Telephone lines
e Sewage lines
To reduce cost, you can connect houses with minimum cost spanning trees.

12.5 Program for Kruskal's algorithm to find Minimum
Spanning Tree of a given connected ,undirected and
weighted graph

#include <bits/stdc++.h>
using namespace std;
/I a structure to represent a weighted edge in graph

class Edge
{
public:
int src, dest, weight;
¥
/I a structure to represent a connected, undirected
// and weighted graph
class Graph
{
public:
// ' V-> Number of vertices, E-> Number of edges
int V, E;
/I graph is represented as an array of edges.
/I Since the graph is undirected, the edge
// from src to dest is also edge from dest
// to src. Both are counted as 1 edge here.
Edge* edge;
Y

Il Creates a graph with V vertices and E edges

Graph* createGraph(int V, int E)
{

Graph* graph = new Graph;

graph->V =V,

graph->E = E;

graph->edge = new Edge[E];

return graph;

/I A structure to represent a subset for union-find

72

class subset
{
public:
int parent;
int rank;
j
/I A utility function to find set of an element i
/I (uses path compression technique)
int find(subset subsets[], int 1)
{
// find root and make root as parent of i
Il (path compression)
if (subsets[i].parent =)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
/I A function that does union of two sets of x and y
/I (uses union by rank)
void Union(subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
/I Attach smaller rank tree under root of high
I rank tree (Union by Rank)
if (subsets[xroot].rank< subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank> subsets[yroot].rank)
subsets[yroot].parent = xroot;
/I I ranks are same, then make one as root and
I/l increment its rank by one
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;

¥
¥

/I Compare two edges according to their weights.
/I ' Used in gsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
Edge* al = (Edge*)a;
Edge* bl = (Edge*)b;
return al->weight > b1->weight;

}
/I The main function to construct MST using Kruskal's
algorithm
void KruskalMST(Graph* graph)
{

int V = graph->V,

73

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure

Notes

Self —instructional material

Edge result[V]; // Tnis will store the resultant MST
inte=0;
inti=0;

gsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);

/I Allocate memory for creating V ssubsets
subset *subsets = new subset[(V * sizeof(subset))];
Il Create V subsets with single elements
for (intv=0; v<V;++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;

}
// Number of edges to be taken is equal to V-1
while (e <V - 1 &&i< graph->E)
{
Edge next_edge = graph->edge[i++];
int X = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);

if (x1=y)
{

result[e++] = next_edge;

Union(subsets, X, y);

/Il Else discard the next_edge

/I print the contents of result[] to display the
/I built MST

cout<<"Following are the edges in the constructed MST\n";

for (i=0; i<e; ++i)

cout<<result[i].src<<" -- "<<result[i].dest<<" ==
"<<result[i].weight<<endl;

¥

return;

/I Driver code
int main()

{

int V=4; // Number of vertices in graph
int E=5; // Number of edges in graph
Graph* graph = createGraph(V, E);

// add edge 0-1
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = 10;

// add edge 0-2
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 6;

// add edge 0-3
graph->edge[2].src = 0;
graph->edge[2].dest = 3;
graph->edge[2].weight = 5;

74

// add edge 1-3
graph->edge[3].src = 1;
graph->edge[3].dest = 3;
graph->edge[3].weight = 15;

/l add edge 2-3
graph->edge[4].src = 2;
graph->edge[4].dest = 3;
graph->edge[4].weight = 4;

KruskalMST/(graph);
return O;

by

Output:

Following are the edges in the constructed MST
2--3==

0--3==

0--1==10

Prims algorithm

Prim's algorithm is a greedy algorithm that finds a minimum
spanning tree for a connected weighted undirected graph. It finds a subset
of the edges that forms a tree that includes every vertex, where the total
weight of all the edges in the tree is minimized.

The program below implements Prim's algorithm in C++.
Although adjacency matrix representation of graph is used, this algorithm
can also be implemented using Adjacency List to improve its efficiency.

12.6Program for Prim's Algorithm Implementation

#include <iostream>
#include <cstring>

using namespace std;
#define INF 9999999

#define V 5
int G[V][V] ={
{0, 9, 75, 0, 0},

{9, 0, 95, 19, 42},
{75, 95, 0, 51, 66},
{0, 19, 51, 0, 31},
{0, 42, 66, 31, 0}
Y
int main()
{

int no_edge;

int selected[V];
memset (selected, false, sizeof (selected));

75

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure

Notes

Self —instructional material

no_edge = 0;

selected[0] = true;
int x; /I row number
inty; /I col number

/I print for edge and weight
cout<< "Edge" <<": " << "Weight";

cout<<endl;
while (no_edge<V - 1)

t
int min = INF;
x=0;
y=0;
for (inti=0; i<V, i++) {

if (selected[i]) {

for (intj=0;j<V;j++) {
if (!selected[j] && GJi][j]) {
if (min > GJi][j]) {
min = G[i][j];
X =1
y=i
}

¥
¥
¥
¥

cout<< x << "-"<<y<<": " << G[X][Y];
cout<<endl:
selected[y] = true;
no_edge++;
}

return O;

}

Output:
Edge : Weight
0-1:9
-3:19
-4: 31
-2:51

w w

Breadth First Traversal

Breadth First Search (BFS) algorithm traverses a graph in a
breadthward motion and uses a queue to remember to get the next vertex to
start a search, when a dead end occurs in any iteration.

76

12.7Programs for the implementation of BFS for a given
graph

#include<iostream>

#include<conio.h>

#include<stdlib.h>

using namespace std;

int cost[10][10].i,j,k,n,qu[10],front,rare,v,visit[10],visited[10];
main()

t

int m;

cout<<"Enterno of vertices";

cin>> n;

cout<<"Enter no of edges";

cin>>m;

cout<<"\nEDGES \n";

for(k=1;k<=m;k++)

{ o
cin>>i>>j;
cost[i][j]=1;

}

cout<<"Enter initial vertex";

cin>>v;

cout<<"Visitied vertices\n";

cout<< v;

visited[v]=1;

k=1;

while(k<n)

{

for(j=1;j<=n;j++)

if(cost[V][j]!=0 && visited[j]!=1 && visit[j]!=1)

{
visit[j]=1;
qu[rare++]=j;

v=qu[front++];

cout<<v << "'

k++;

visit[v]=0; visited[v]=1;

}

}

Output :

Enterno of vertices9

Enter no of edges9
EDGES

77

Non-linear data structure

Notes

Self —instructional material

Non-linear data structure

Notes

Self —instructional material

12

23

15

14

47

78

89

26

57

Enter initial vertexl
Visited vertices
124536789

78

BLOCK 5 SEARCHING AND SORTING
ALGORITHMS

UNIT 13 Searching Techniques: Linear
and Binary search Programs

Linear Search

A Linear Search is the most basic type of searching algorithm. A
Linear Search sequentially moves through your collection (or data
structure) looking for a matching value. In other words, it looks down a
list, one item at a time, without jumping. Think of it as a way of finding
your way in a phonebook.

13.1 Simple Linear Search Example Program (Sequential
search)

#include<iostream.h>
#include<conio.h>
class linear

int data[50],x;
int i,n;
public:
void get();
void search();
3

void linear::get()

cout<<"Enter n value:\t";

cin>>n;

cout<<"Enter the "<<n<<" values....\n";
for(i=0;i<n;i++)

cin>>data[i];

}
}
void linear::search()
{
int y,f=0;
cout<<"\nEnter the value to search:";
cin>>y;

79

Searching And Sorting
Algorithms

Notes

Self —instructional material

Searching And Sorting
Algorithms

Notes

Self —instructional material

for(i=0;i<n;i++)

{
if(y==data[i])
{
f=1;
break;
}
}
if(f==1)
{

cout<<"\nThe given search element "<<y<<" found at index "
<<i<<endl;

}
else
{
cout<<"\n Element Not found";
}

}

void main()

{
clrscr();
linear ob;
ob.get();
ob.search();
getch();

}

Output

Enter n value: 5
Enter the 5 values.... 12345

Enter the search element: 4
The given search element 4 is found at the index 3

Binary Search

Binary search is a fast search algorithm with run-time complexity
of O(log n). ... For this algorithm to work properly, the data collection
should be in the sorted form. Binary search looks for a particular item by
comparing the middle most item of the collection. If a match occurs, then
the index of item is returned.

13.2Program for Binary Search

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
class binary

{

80

int i,n,a[10],low; high,t,j,flag,x, mid; Searching And Sorting

pUinC: Algorithms
void getdata();
void sorting();
void searching();
¥
void binary::getdata() Notes
{
cout<<"\nEnter the n values:\t";
cin>>n;
cout<<"\nEnter the elements one by one:\n";
for(i=0;i<n;i++)
{
cin>>a[i];
}
}

void binary::sorting()

for(i=0;i<n;i++)
{
for(j=n-1;j>i;j--)
{
if(afj]<alj-1])

{
t=a[j];
aljl=alj-11;
a[j-1]=t;

¥

cout<<"\nAfter sorting:\t";
for (i=0;i<n;i++)

{

}
}
void binary::searching()

{

cout<<a[i]<<"\t";

int x;

flag=1,

low=0;

high=n-1,

cout<<"\n\nEnter the searching element:\t";
cin>>x;

while(low<=high)

{

mid=(low+high)/2;
if(x<a[mid])

81 Self —instructional material

Searching And Sorting
Algorithms

Notes

Self —instructional material

high=mid-1;
else

low=mid+1;
}
if(a[mid]==x)
{

flag=0;

break;
}

else

{

}
}
if(flag==0)

flag=1,

cout<<"\nThe required Element "<<x<<" is found\n™;

¥

else

{
¥

void main()

{

cout<<"Element not found";

clrscr();

cout<<"\t\ttBINARY SEARCH\n";
binary b;

b.getdata();

b.sorting();

b.searching();

getch();

¥

Output:
BINARY SEARCH
Enter the n values:
5
Enter the elements one by one:
50
30
10
20
40
After Sorting
10 20304050
Enter the search element
40
The required Element 40 is found

82

UNIT 14
Sorting techniques:Bubble sort,Quick
sort,Insertion sort,Merge sort

Bubble sort:

Bubble sort, sometimes referred to as sinking sort, is a simple
sorting algorithm that repeatedly steps through the list, compares adjacent
pairs and swaps them if they are in the wrong order. The pass through the
list is repeated until the list is sorted.

14.1 Program for BUBBLE SORT

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
class bubble
{
int i,j,k,n,data[20],t;
public:
void getdata();
void calculation();

void display();
3
void bubble::getdata()
{
cout<<"Enter the value of n:\t";
cin>>n;
cout<<"Enter the elements:\n";
for(i=0;i<n;i++)
cin>>data[i];
}
}
void bubble::calculation()
{
for(i=0;i<n;i++)
{
for(j=n-1;j>i;j--)
{
if(data[j]<data[j-1])
{
t=data[j];
data[j]=data[j-1];
data[j-1]=t;

83

Searching And Sorting
Algorithms

Notes

Self —instructional material

Searching And Sorting
Algorithms

Notes

Self —instructional material

¥
¥

cout<<"\nAfter"<<i<<"iteration\n";

for(k=0;k<n;k++)
{

}

cout<<data[k]<<"\t";

}
}
void bubble::display()
{

cout<<"\nAfter sorting\n";
for (i=0;i<n;i++)

{
¥

void main()

{

cout<<data[i]<<"\t";

clrscr();

cout<<"\t\\tBUBBLE SORT\n";
bubble i;

i.getdata();

i.calculation();

i.display();

getch();

¥

Output:
BUBBLE SORT
Enter the value of n:
5
Enter the elements:
2

o U1 00

1

After 0 iteration
28516

After 0 iteration
28156

After 0 iteration
21856

After 0 iteration
12856

After 1 iteration
12856

After 1 iteration
12586

After 1 iteration

84

12586

After 2 iteration
12568

After 3 iteration
12568

After Sorting
12568

Quick sort:

Quick sort is one of the most famous sorting algorithms based on

divide and conquers strategy which results in an O(n log n) complexity. So,
the algorithm starts by picking a single item which is called pivot and
moving all smaller items before it, while all greater elements in the later
portion of the list.

14.2Program for Quick Sort

#include<iostream.h>
#include<conio.h>
void main()

{

¥

void quicksort(int [],int,int);

int data[50],i,1b,mb;

clrscr();

cout<<"\t\\tQUICK SORT\n";
cout<<™\n\nEnter n value:\t";

cin>>n;

cout<<"\n\nEnter the "<<n<<" elements...\n";
for(i=0;i<n;i++)

cin>>data[i];
}
quicksort(data,0,n-1);
cout<<"\n\n\nSorted array....\n";
for(i=0;i<n;i++)

{

¥
getch();

cout<<data[i]<<endl;

void quicksort(int data[],int Ib,int mb)

{

int flag,low,high,pivot t;
if(lo<mb)

{
flag=1;

85

Searching And Sorting
Algorithms

Notes

Self —instructional material

Searching And Sorting
Algorithms

Notes

Self —instructional material

¥
I*OUTPUT

low=Ib+1;
high=mb;
pivot=data[lb];
while(flag)

while(data[low]<pivot && low<mb)

low++;
¥
while(data[high]>pivot)
{
high--;
¥
if(low<high)
{
t=data[low];
data[low]=data[high];
data[high]=t;
¥
else
flag=0;
¥
t=data[lb];

data[lb]=data[highl];

data[high]=t;

cout<<"\nAfter "<<I<<" iteration....\n";
I++;

for(int i=0;i<n;i++)

{

cout<<data[i]<<"\t";
}
cout<<endl:

quicksort(data,Ib,high-1);
quicksort(data,high+1,mb);

QUICK SORT

Enter n value: 5

Enter the 5 elements

12653618

After 1 iteration.....

36126518

After 2 iteration....

36126518

After 3 iteration

86

36121865

Sorted array..
3

6

12

18

65

Insertion Sort

Insertion sort is based on the idea that one element from the input
elements is consumed in each iteration to find its correct position i.e., the
position to which it belongs in a sorted array. Since is the first element has
no other element to be compared with, it remains at its position.

Following C++ program ask to the user to enter array size and array
element to sort the array using insertion sort technique, then display the
sorted array on the screen:

14.3 Programming Code for Insertion Sort

#include<iostream.h>
#include<conio.h>
class sort

int data[50],n,i,j,t;
public:
void get();
void sort();
void display();
¥
void sort::get()

cout<<"\nEnter n value:\t";

cin>>n;

cout<<"\n\nEnter the "<<n<<" elements...\n";
for(i=0;i<n;i++)

cin>>data[i];

}
}
void sort::sort()
{

for(i=1;i<=n;i++)

87

Searching And Sorting
Algorithms

Notes

Self —instructional material

Searching And Sorting
Algorithms

Notes

Self —instructional material

t=data[i];
for(j=i;j>0 && t<data[j-1];j--)
{

data[j]=data[j-1];

cout<<"\n\nAfter "<<i<<" iteration\n\n";
for(int k=0;k<n;k++)

{
cout<<data[k]<<"\t";
¥
data[j]=t;
}
}
void sort::display()
{
cout<<"\n\nAfter sorting....\n\n";
for(i=0;i<n;i++)
{
cout<<data[i]<<endl;
}
}
void main()
clrscr();
cout<<”Insertion Sort \n”;
sort ob;
ob.get();
ob.sort();
ob.display();
getch();
}

Insertion sort
Enter n value: 5
Enter the 5 Elements
15 20 5 8 12
After 1 iteration
15 20 5 8 12
After 2 iteration
15 15 20 8 12
After 3 iteration
515 15 20 12
After 4 iteration
58 15 15 20
After 5 iteration
5812 15 20

After sorting
5812 15 20

88

Merge sort

Merge sort is a divide-and-conquer algorithm based on the idea of
breaking down a list into several sub-lists until each sublist consists of a
single element and merging those sublists in a manner that results into a
sorted list. Idea: Divide the unsorted list into sublists, each containing
element.

14.4Program For Merge Sort

#include<iostream.h>
#include<conio.h>

int n,data[50];
void merge(int data[],int low,intmid,int high)
{
int i,j,k,b[50],h;
i=low;
h=low;
j=mid+1;
while(h<=mid && j<=high)
{
if(data[h]<=data[j])
{
b[i]=data[h];
h++;
}
else
b[i]=data[j];
J++;
}
i++;
}
if(h>mid)
for(k=j;k<=high;k++)
{
b[i]=data[K];
i++;
}
}
else
{

for(k=h;k<=mid;k++)

b[i]=data[k];
i++;

89

Searching And Sorting
Algorithms

Notes

Self —instructional material

Searching And Sorting
Algorithms

Notes

Self —instructional material

}

}
for(k=low;k<=high;k++)
{

data[k]=Db[K];
cout<<endl,

for(i=low;i<=high;i++)

{
cout<<data[i]<<"";
}
cout<<endl;
}
void disp()
{
for(int i=0;i<n;i++)
{
cout<<data[i]<<"\t";
}
cout<<endl;
}

void mergesort(int data[],int low,int high)

{

static int i=1;
int mid;
if(low<high)
{

mid=(low+high)/2;
mergesort(data,low,mid);
mergesort(data,mid+1,high);
merge(data,low,mid,high);
cout<<"\nAfter "<<i<<" iteration:\t";

i++;
disp();
}
void main()
t
int i;
clrscr();

cout<<’Merge Sort”<<endl;

cout<<"\nEnter n value:\t";

cin>>n;

cout<<"\nEnter the "<<n<<" elements.....\n":
for(i=0;i<n;i++)

{
¥

mergesort(data,0,n-1);
cout<<"\n\nSorted array.....\n\n";

cin>>data[i];

90

Output

disp();

getch();

Merge Sort
Enter n value: 5

Enter the 5 elements

6

5

After 1 iteration: 5

5

After 2 iteration: 5

1

After 3 iteration: 5

1

After 4 iteration: 1

5

6

6

4

4

Sorted array

1

4

7

7

5

91

Searching And Sorting
Algorithms

Notes

Self —instructional material

